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Ground-water Resources of the Brunswick Formation

in Montgomery and Berks Counties, Pennsylvania
By
Stanley M. Longwill and Charles R. Wood
ABSTRACT

The Brunswick Formation in Montgomery and Berks Counties, Pa., consists of red-
dish-brown shale, mudstone, and siltstone, which are interbedded with sandstone and
fanglomerate near the northern border of the Triassic basin. In places the Brunswick
Formation has been intruded by diabase dikes and sills, and throughout much of its
outcrop area it is interbedded with the Lockatong Formation. The Lockatong Forma-
tion in Montgomery County consists principally of massively bedded medium- to
dark-gray argillite interbedded with thin beds of gray to black shale, siltstone, and
marlstone.

Ground water in the Brunswick and Lockatong Formations occurs largely in sec-
ondary openings such as joint planes. These secondary openings are more abundant
and much more closely spaced in the Brunswick Formation than in the Lockatong
Formation. Consequently, wells in the Lockatong Formation generally yield water for
domestic purposes only whereas many wells in the Brunswick Formation yield suffi-
cient water for industrial and municipal use.

Data from 199 wells that obtain water from only the Brunswick Formation in
Montgomery County indicate that wells should be drilled at least 200 feet deep, if
yields of more than 100 gpm (gallons per minute) are desired. Wells drilled to depths
between 200 and 550 feet are most likely to obtain maximum yields.

Pumping tests in the Brunswick Formation, using observation wells, were made at
six localities. Coefficients of transmissibility computed from drawdown data at the
observation wells are much higher than transmissibilities calculated at the pumped
wells, demonstrating the poor hydraulic connection between the pumped wells and
the observation wells. The excessively high transmissibilities are useful for estimating
the effect of pumping upon nearby wells and indicate that interference between wells
during brief periods of pumping may be somewhat less in the Brunswick Formation
than in an ideal aquifer. Water levels in the observation wells declined to a greater
extent than predicted by the transmissibilities computed from data obtained during
the early part of a pumping test, however, because impermeable boundaries appear in
the test data of almost all observation wells. Transmissibilities computed for the
pumped wells at the six test localities range from 100 to 5,000 gpd (gallons per day)
per foot, and the median transmissibility is 1,100 gpd per foot.

Transmissibilities determined from additional pumping tests in the Brunswick
Formation, which were made without observation wells, range from 140 to 4,000
gpd per foot, and the median is 600 gpd per foot. Transmissibilities determined from
pumping tests in the Lockatong Formation, all of which were made without observa-
tion wells, range from 60 to 2,600 gpd per foot, and the median is 150 gpd per foot.

Observation wells situated along a line from the pumping well that is perpendicular
to the strike of the beds show much less drawdown in response to pumping than do
wells situated along a line parallel to the strike, because the former do not penetrate
the same strata as the pumped well. The resultant cone of depression surrounding a
pumping well is ellipsoidal in shape—being elongated parallel to strike.

1



2 BRUNSWICK FORMATION GROUND WATER

Chemical analyses of ground-water are available from 36 wells in the Brunswick
Formation and six wells in the Lockatong Formation. Ground water in both forma-
tions is largely of the calcium-bicarbonate type. However, water samples from the
Brunswick Formation having concentrations of dissolved solids greater than 500 ppm
(parts per million) are of the calcium-sulfate type. Median dissolved-solids content
is 302 ppm in water from the Brunswick Formation and 268 ppm in water from the
Lockatong Formation. Median hardness as CaCO; is 218 ppm in water from the
Brunswick Formation and 206 ppm in water from the Lockatong Formation.

INTRODUCTION

PURPOSE AND SCOPE

Prior to 1940, the area in Montgomery and Berks Counties that lies to
the north and northwest of Philadelphia, Pa., consisted chiefly of small
towns surrounded by farm land. The industrialization and urbanization
of this area increased rapidly after the Second World War. For example,
the population of Montgomery County as determined by the 1940 census
was only 289,247, but by 1960 the population had risen to 516,682,
almost double the 1940 figure. Most of the population increase and in-
dustrial investment occurred in the southern part of Montgomery County
while the northern part retained its rural character.

The development of new ground-water supplies to meet the increased
demands of industries, municipalities, and individual consumers in this
rapidly growing area has been seriously handicapped by a lack of geologic
and hydrologic data. Having recognized that maximum utilization of the
available supply depends on understanding the occurrence, movement, and
distribution of the ground water in the area, a study of the occurrence of
ground-water in the Triassic rocks of southeastern Pennsylvania was begun
in 1956 by the U.S. Geological Survey in cooperation with the Pennsylvania
Topographic and Geologic Survey.

This report deals chiefly with the ground-water resources of the Bruns-
wick Formation in Montgomery and Berks Counties, although some atten-
tion is directed to the water-bearing properties of the Lockatong Formation
in the same area. It is one of a series of reports that will eventually describe
the ground-water resources of the rocks of Triassic age in southeastern
Pennsylvania. The first of these, a report on the Stockton Formation in
southeastern Pennsylvania, was published in 1962 (Rima, D. R., and
others, 1962).

LOCATION OF THE AREA

The area covered by this report is in Montgomery and Berks Counties,
in southeastern Pennsylvania, between lat. 40°08" and 40°27" N. and long.
75°09" and 75°56” W. (See Fig. 1.) The area extends for 41 miles from
the eastern border of Montgomery County to its most western point, on
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Figure 1. Map of southeastern Pennsylvania showing location of area covered by this report.

the Schuylkill River near Reading, Pa. It is 16 miles wide in eastern Mont-
gomery County and parrows to less than 1 mile wide near Reading. The
total area covered by the report is 347 square miles, of which 300 square
miles is in Montgomery County and 47 square miles is in Berks County.

METHODS OF THIS INVESTIGATION

An inventory was made of nearly all municipal and industrial wells and
about 70 rural and domestic wells in the area covered by this report. The
records for 322 wells are given in table 6, and the well locations are shown
in Plate 1.

Pumping tests ranging in duration from 3 to 101 hours (and making
use of observation wells) were made at six locations. Short-term pumping
tests (generally of 1-hour duration and without the use of observation
wells) were made at 15 wells. Three test wells were drilled in order to
obtain geologic data and to provide sites for pumping tests.

Ground-water samples were collected from 42 wells, and complete
chemical analyses of the samples were made by the Quality of Water
Branch, U.S. Geological Survey.

PREVIOUS INVESTIGATIONS

The ground-water resources of the Brunswick and Lockatong Formations
in Berks and Montgomery Counties were described very briefly by Hall
(1934) who made a reconnaissance investigation of the ground-water re-
sources of southeastern Pennsylvania. Rima (1955) investigated the
ground-water resources of the Brunswick Formation in the vicinity of
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Lansdale. Greenman (1955) described the ground-water resources of the
Brunswick and Lockatong Formations in adjoining Bucks County. Barks-
dale and others (1958) prepared a report covering the ground-water re-
sources in the tri-state region adjacent to the lower Delaware River, which
discussed the water-bearing properties of the Brunswick and Lockatong
Formations.

The geology of the Quakertown and Doylestown 15-minute quadrangle
was described and mapped by Bascom and others (1931). Bascom and
Stose (1938) described the geology of the Phoenixville 15-minute quad-
rangle. Since 1932, D. B. McLaughlin has written many articles describing
the geology of the Brunswick and Lockatong Formations in southeastern
Pennsylvania. These articles are summarized in the report on the geology
of the Mesozoic rocks in Bucks County (McLaughlin, 1959) which de-
scribes in detail the geology of the Brunswick and Lockatong Formations in
southeastern Pennsylvania.
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WELL-NUMBERING SYSTEM

All wells used in this report have an identification number and a location
number. The identification number consists of two parts. The first part is a
two-letter symbol that identifies the county in which the well is located.
For example, wells in Montgomery County are identified by the symbol
Mg and those in Berks County are identified by the letters Be. The second
part of the identification number is a serial number that was assigned at the
time the well was first visited during the field investigation.

Each well identified in the manner described is located by means of a
three-part well-location number. The first two parts are obtained by super-
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imposing a grid network on the area of investigation. The network is con-
structed of 1-minute parallels of latitude and meridians of longitude. Thus,
it consists of a series of 1-minute quadrangles each of which can be identi-
fied by two three-digit numbers. The first number, which identifies the
latitude bounding the quadrangle on the south, is formed by the last digit
used in the number of degrees latitude and the two digits used in the num-
ber of minutes. The second three-digit number is obtained in a similar way
by using the degrees and minutes of the longitude bordering the quadrangle
on the east. The third part is a serial number assigned to distinguish the
wells from others in the same quadrangle.

For example, a well in Montgomery County given identification num-
ber Mg-633 bears the location number 015-520-10. This well is located in
the 1-minute quadrangle that is bounded on the south by latitude 40°15’
and on the east by longitude 75°20’. The serial number 10 indicates that
this well was the tenth well visited within that 1-minute quadrangle.

CLIMATE

Pennsylvania has a humid climate and moderate temperatures. Most of
the weather disturbances that affect Pennsylvania are carried from the in-
terior of the continent by prevailing westerly winds. However, coastal
storms occasionally affect day-to-day weather in the southeastern part of
the state (Kauffman, 1960, p. 2). Differences in elevation within the area
in this report are not great enough to cause any major differences in climate.

Temperatures in southeastern Pennsylvania generally range from O°F
to 100°F. The summers are long, and daily temperatures reach 90°F or
above on an average of 25 days during the summer. The winters are mild,
and the minimum temperatures go below 32°F an average of less than 100
days a year. The average annual temperature for the report area, based on
data for Phoenixville, is 54.3°F. Mean monthly temperatures at Phoenix-
ville range from 33.1°F in February to 76.7°F in July. (Data from U.S.
Weather Bureau climatic summaries.) The freeze-free season usually
ranges from 170 to 200 days.

The average annual precipitation from 1931 to 1955, based on records
from several stations within the area, was about 44 inches. The minimum
annual precipitation recorded within the report area is 26.45 inches at
Pottstown in 1930. The maximum annual precipitation recorded for the
area is 71.32 inches at Pottstown in 1889.

Precipitation is fairly well distributed throughout the year, but oc-
casionally dry spells persist for several months with very little rainfall.
The average seasonal snowfall is about 30 inches; the ground is covered
by snow about one-third of the time during the winter.

Occasional severe coastal storms have caused a normal 1-month rainfall
to occur within a period of 48 hours. Floods have been caused by these
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coastal storms and by melting snow and heavy rain in the spring. Major
flooding occurred along the Schuylkill River in 1902, 1935, 1942, and
1955.

GEOLOGY
NEWARK GROUP

Rocks of Triassic age occupy a series of disconnected, downfaulted
basins that extend from Nova Scotia to North Carolina, These rocks, known
as the Newark Group, often have a reddish color and consist principally
of conglomerate, arkose, sandstone, siltstone, argillite, and shale. They are
interbedded with basaltic lava flows and are intruded by diabase dikes and
sills.

McLaughlin (1957, p. 1492-1493) believes that the Newark Group is of
Late Triassic age. Paleontologic data support this conclusion (Wherry,
1959, p. 124). Rocks of the group overlie Paleozoic and Precambrian
rocks unconformably, and in New Jersey the Newark Group is overlain
unconformably by Cretaceous rocks.

The Triassic rocks of Montgomery and Berks Counties are part of the
largest Triassic basin in the eastern United States. This basin extends
from the Hudson River in southeastern New York, across New Jersey,
southeastern Pennsylvania, Maryland, and into northern Virginia. In Penn-
sylvania the width of the basin ranges from about 30 miles in eastern
Montgomery County to about 4 miles southeast of Lebanon, Pa.

In southeastern Pennsylvania and western New Jersey the Newark
Group has been divided, proceeding from the oldest sediments to the
youngest, into the Stockton, Lockatong, and Brunswick Formations. (See
Pl. 1.) These formations were described at the type locality in New
Jersey by Kummel (1897). The Stockton Formation is composed of inter-
bedded arkosic sandstone and conglomerate, red shale, and red siltstone.
The Stockton is overlain to the north by the Lockatong Formation, which
is made up principally of dark gray argillite. The Lockatong is overlain
to the north by the Brunswick Formation, which consists chiefly of red
shale and siltstone although there is some interbedded sandstone and
conglomerate near the north border of the outcrop. The Brunswick Forma-
tion is equivalent to the Gettysburg Shale in Adams, York, and Lancaster
Counties, Pa., the two formations having been deposited almost contem-
poraneously.

Although the sum of the thicknesses of the individual formations in the
Newark Group is about 18,000 feet, the total thickness of the Newark
Group present at any one place in southeastern Pennsylvania probably
does not exceed the 12,000 feet believed to be present at the center of the
basin (McLaughlin and Willard, 1949, p. 43). The absence of the total
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thickness at any one place is postulated because the floor of the basin
probably shelved northward and deposition did not start along the northern
edge of the basin until several thousand feet of sediments had accumulated
in the central part of the basin. This theory is supported by the fact that the
Brunswick Formation was deposited directly upon Paleozoic and Precam-
brian rocks along part of the northern border of the Triassic basin in
Pennsylvania.

LOCKATONG FORMATION

The Lockatong Formation occurs principally in a single continuous belt
along the southern edge of the Brunswick Formation. The width of this
belt in Montgomery and Berks Counties varies from 4 miles at the Bucks
County-Montgomery County line to 1% miles at the Schuylkill River. This
main body of Lockatong Formation underlies an area of 46 square miles
in Montgomery County. A few relatively thin tongues of Lockatong occur
well up-section (morthward) in the Brunswick Formation, and although
most of these tongues do not extend far to the west of the Bucks County
line, some of them can be traced for about 30 miles westward to the
Schuylkill River.

The Lockatong Formation in Montgomery County consists principally
of medium-to dark-gray argillite interbedded with thin beds of gray to black
shale, siltstone, and marlstone. Bedding is principally massive. Van Houten
(1960, p. 666) indicates that the Lockatong contains a large percentage of
analcime (up to 40 percent) along with dolomite, feldspar, and clay.
Quartz is a very minor constituent of the Lockatong Formation. Pyrite is
scattered throughout the formation and calcite is common, especially in
joints.

In the area of this investigation the Lockatong Formation attains its
maximum stratigraphic thickness at the Bucks County line. A stratigraphic
section measured by McLaughlin (1959, p. 88) at this locality shows a
thickness of slightly over 4,000 feet. The Lockatong Formation thins
rapidly to the west and is only about 1,500 feet thick at the Schuylkill
River (Bascom and Stose, 1938, p. 72).

The Lockatong Formation overlies the Stockton Formation conformably,
and probably there is some interfingering of the two formations (McLaugh-
lin, 1959, p. 77). The Lockatong is overlain conformably by the Bruns-
wick Formation, and there is considerable interfingering between these
formations—especially in eastern Montgomery County. Where there is
interfingering, the percentage of red beds in the section increases upward
in the stratigraphic column until the red beds of the Brunswick Formation
predominate over the gray shale and argillite of the Lockatong.

The Lockatong Formation grades westward along strike into the typical
red shale, mudstone, and siltstone of the Brunswick Formation. This
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gradation and thinning westward continues until the Lockatong Formation
disappears a few miles west of Phoenixville.

BRUNSWICK FORMATION

In Montgomery and Berks Counties, the Brunswick Formation, together
with the associated diabase intrusives, occupies an area of 301 square
miles. Two large areas of Brunswick, one of about 25 square miles (lying
mostly in Upper Hanover Township, Montgomery County) and the other
of 50 square miles (lying mostly in Douglass and New Hanover Townships,
Montgomery County) are separated from the main body of the Brunswick
Formation by diabase intrusives.

The Brunswick Formation consists typically of reddish-brown shale,
mudstone, and siltstone. A few very thin beds of green shale and brown
shale are present in the Brunswick, and in some places they can be used
as marker beds for distances up to 1 mile. Van Houten (1960, p. 669)
indicates that the Brunswick Formation consists chiefly of feldspar, illite,
chlorite, quartz, and calcite. Some beds are finely micaceous. Joints in the
Brunswick Formation commonly are partly filled with calcite and quartz.
Occasionally barite and pyrite are present as joint filling, and very small
crystals of pyrite may be disseminated throughout the rock.

The total apparent thickness of the Brunswick Formation in Bucks
County is about 9,000 feet (McLaughlin, 1959, p. 99). The maximum
thickness is greater to the west and is about 16,000 feet near Pottstown,
Pa. (Bascom and Stose, 1938, p. 76).

Near the base of the Brunswick much of the rock is tough thick-bedded
red argillite and is interbedded with dark-gray argillite of the Lockatong
Formation. This red argillite grades upward and also along strike into red
shale, mudstone, and siltstone. Near the north border of the Triassic basin,
the typical shales, mudstones, and siltstones of the Brunswick Formation
are interbedded with and grade laterally into sandstone and fanglomerate.

There are many excellent exposures of the Brunswick Formation—es-
specially along streams and railroad cuts. For detailed geologic sections
the reader is referred to McLaughlin (1933) and Bascom and Stose
(1938). Table 7 contains seven sample logs that illustrate the relatively
uniform character of the Brunswick Formation. Some of them (Be-125
for example) show that beds of gray argillite typical of the Lockatong are
present also in the Brunswick Formation.

FANGLOMERATES

Fanglomerates occupy about 6 square miles along the northern border
of the area of investigation. These fanglomerates were deposited as alluvial
fans by streams flowing into the basin from the north. They are mostly
limestone breccias consisting of angular gray limestone pebbles in a red-
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dish-brown or buff, fine-grained, sandy-to-argillaceous matrix. Some
pebbles of quartzite and other rocks are also present.

These fanglomerates occur at several locations along the northern border
and are extensively interbedded with typical shale and siltstone of the Bruns-
wick. The beds of limestone breccia grade along strike into reddish-brown
sandstone and then into reddish-brown shale.

Outcrops of fanglomerate are very scarce in Montgomery County; how-
ever, in Berks County the area of fanglomerate that crosses the Schulykill
River south of Reading is exposed in many places.

The fanglomerates are some of the youngest beds within the Brunswick
Formation. However, west of the Schuylkill River, fanglomerates were
deposited throughout most of the period of deposition of the Brunswick
Formation. Several tongues of fanglomerate extend eastward towards the
Schulykill River, and are represented at the river by a few thin sandstone
beds.

The areas mapped as fanglomerate on Plate 1 are areas in which breccia
and conglomerate are more prevalent than the interbedded shale, siltstone,
and mudstone.

METAMORPHISM

Near the diabase intrusives the shales of the Brunswick Formation are
altered to dark, tough hornfels. These hornfels closely resemble the Locka-
tong Formation because of the change of color caused by the reduction
of ferric to ferrous oxide. The effect of the metamorphism on the color of
the sediments is gradational, the first effect being the change from red to
purplish red. With increased baking the beds change from purple to dark
gray or blue black.

The width of the altered zone differs greatly from place to place. Ad-
jacent to the smaller dikes the zone is usually between 40 and 100 feet
wide, and in the vicinity of the larger intrusives the altered zone may be
more than 1 mile wide. The rocks near the outer limit of the altered zone
show very little change in lithology.

DIABASE

The Brunswick Formation has been intruded by many diabase dikes and
sills in southeastern Pennsylvania. The dikes are generally 5 to 100 feet
thick, and their outcrops may extend for several miles. The diabase in
these narrow dikes is black, dense, very fine-grained, and consists of 90 to
95 percent labradorite and augite.

The sills, with few exceptions, are much thicker than the dikes. The
largest sills in the area are more than 1,000 feet thick. The diabase in the
larger intrusives, except in the chilled border zone, is medium to coarse
grained, greenish gray, and also consists of 90 to 95 percent labradorite
and augite (Ryan, 1959, p. 155).
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STRUCTURE

The average dip of the beds in the Brunswick and Lockatong Formations
is to the north and northwest at about 20°. Several broad synclines and
anticlines, whose axes trend about N. 60° W., are superimposed on this
homocline.

The Brunswick and Lockatong Formations have been cut by many
faults, most of which are relatively small. Some of these small faults may be
observed in the railroad cut south of North Wales. McLaughlin (1942)
gives the location of several faults.

The largest fault observed in Berks and Montgomery Counties passes
between Hatfield and Souderton in an east-west direction. It has a throw of
about 3,000 feet at the Bucks County-Montgomery County line (Mc-
Laughlin, 1959, p. 129). The Brunswick Formation is in fault contact with
the underlying Paleozoic and Precambrian rocks along part of the northern
border of the Triassic basin.

Joint systems are well developed in many of the beds in the Brunswick
Formation. A very small set of joints strikes about N. 30° E., and one or
both of two additional, less well-developed sets may be observed at most
outcrops. These additional sets strike about N. 45° W. and N. 75° E. All
of the joints are nearly vertical, and the average distance between joints in
most sets is about 6 inches. The strike of the Joint sets appears to be in-
dependent of the dip and strike of the beds.

HYDROLOGY
PRINCIPLES

Ground water is the subsurface water in that part of the zone of satura-
tion in which all the interconnected pores, crevices, and voids in the rock
are filled with water under pressure equal to or greater than atmospheric.
Precipitation is the source of ground water in southeastern Pennsylvania.
Although most of the water that reaches the land surface from the atmos-
phere either runs off as overland flow or is returned to the atmosphere by
evaporation and transpiration, some infiltrates downward through the soil
to the zone of saturation, where it becomes recharge to the main ground-
water body. Upon reaching the zone of saturation, it begins to move down-
ward and laterally toward lower elevations, and eventually it may return
to the surface either naturally (through springs) or artificially (through
wells) . Under natural conditions and over long periods of time, the amount
of water that leaves the zone of saturation as discharge is balanced by the
amount of water that enters it as recharge.

Ground water may be roughly divided into two classes: (1) that which
occurs in the shallow formations, mostly under nonartesian conditions,
and (2) that which occurs in the deeper formations, under artesian condi-
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tions. Nonartesian conditions are those in which ground water is uncon-
fined, so that its upper surface (the water table) is free to rise and fall.
Artesian conditions are those in which the ground water is confined in a
permeable formation that is overlain by a relatively impermeable formation,
so that the upper surface of the confined water is not free to rise and fall,
and the water is under sufficient pressure to rise above the top of the
formation that contains it where that formation is penetrated by wells. The
imaginary surface to which water will rise in tightly cased wells tapping
the artesian aquifer is called the piezometric surface.

In humid areas, such as southeastern Pennsylvania, the water table stands
at or near the land surface in valleys and rises toward adjacent topographic
divides. The slope of the water table is generally less than that of the land
surface; hence, the depth to the water table below the land surface is usual-
ly greatest beneath topographic highs and least beneath topographic lows.

The water table does not remain in a fixed position but fluctuates in
response to additions to and withdrawals from the zone of saturation. As
the seasonal variation in precipitation in southeastern Pennsylvania is small,
the dominant factor controlling the fluctuation of the water table in areas
remote from pumped wells is the seasonal variation in the rate of evapora-
tion and transpiration. Thus the water table generally declines throughout
the warm growing season (April to October) and rises throughout the
remainder of the year.

Within the zone of saturation, the rocks of the earth’s crust differ greatly
in their capacity to store and transmit ground water. Rocks that are capable
of yielding usable quantities of ground water to wells are called aquifers.
An aquifer may consist of all or part of a geologic formation or group of
formations.

Most of ground water, like water in other phases of the hydrologic cycle,
is continually in motion. It flows by gravity from intake or recharge areas,
where hydraulic potentials are high, through permeable zones or aquifers
to points of discharge, where hydraulic potentials are low.

OCCURRENCE OF GROUND WATER IN THE
BRUNSWICK FORMATION

The Brunswick Formation is composed of very fine-grained rocks. The
pore spaces within the rock matrix are very small and offer great resistance
to the flow of ground water. Therefore, the permeability due to the primary
porosity of the Brunswick Formation is small.

Most of the ground-water movement within these rocks follows sec-
ondary openings that were developed by external forces, following deposi-
tion of the beds. Some of these openings are fractures that parallel the
bedding planes. They are usually narrow and probably contribute little to
the permeability. The most important openings are nearly vertical joint
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planes that cross each other at various angles throughout the beds. These
vertical joints provide an interconnected series of channels through which
ground water can flow.

The number and width of secondary openings and, consequently, the per-
meability differ from one bed to another. In a series of beds 100 feet thick
there may be only one or two beds in which the secondary openings are
well developed. These beds range in thickness from a few inches to a few
feet; the average thickness is about 2 feet.

Because of conditions under which the rocks of the Brunswick Forma-
tion were deposited, lateral changes in the lithology take place within the
formation. The rocks are a series of overlapping lens-shaped beds that are
discontinuous in all directions along the plane of bedding. Examination of
rock outcrops in the area indicates, however, that many of these lens-
shaped beds extend for several thousand feet along strike.

The Brunswick Formation is generally a reliable source of small to mod-
erate supplies of ground water, and in many places wells yield more than
100 gpm.

Analysis of data from 199 wells, which obtain water from only the Bruns-
wick Formation in Montgomery and Berks Counties, indicates that there is
a significant relationship between well yields and well depths. (See Fig. 2.)
If yields of 100 gpm or more are desired, wells should be drilled at least
200 feet deep. According to the data shown on Figure 2, wells drilled to
depths between 200 and 550 feet deep are most likely to obtain maximum
yields.

For example, of 35 wells less than 185 feet deep, only 1 well yields more
than 100 gpm, and only 5 yield more than 50 gpm. But 45 percent (68 of
151) of the wells between 185 feet and 550 feet deep yield more than 100
gpm, and about 75 percent (115 of 151) of them yield more than 50 gpm.

Thirty-two wells yield 200 gpm or more, and all but two of these wells
are between 185 and 545 feet deep. Only seven wells yield more than 300
gpm, and all but one of these are between 200 and 510 feet deep.

Data were obtained for only 14 wells more than 550 feet deep; so, the
yields of wells more than 550 feet deep are perhaps not evaluated conclu-
sively in this report.

Data such as these can be misleading if the use of the wells is not con-
sidered, because wells drilled for domestic purposes commonly show lower
yields than wells drilled for industrial use or public supply. Presumably
this is because domestic water needs are small and the drilling of such wells
is stopped when a small but adequate water supply is obtained. Also, many
domestic wells may not be tested rigorously to determine their maximum
yield. This effect of domestic wells is not believed to be significant in the
data here discussed, as 174 of the 199 wells shown in Figure 2, and 24 of
the 34 less than 185 feet deep, are either used as industrial or public-supply
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HYDROLOGY 15

wells or were tested for such use. The data contained in this report, there-
fore are believed to fairly represent the relationship of well yields versus
depth of wells.

The sharply defined increase in the yield of wells at a depth of about 200
feet is believed to be the result of a rather abrupt change in the nature of
rock weathering at depth. In the area of this investigation it appears that
the zone of greatest decomposition—where the rock voids are believed to be
partly plugged with residual clay—lies above a depth of 200 feet. Similar
depths of intense weathering in the Brunswick Formation were reported by
Barksdale and others (1958, p. 86).

OCCURRENCE OF GROUND WATER IN
THE LOCKATONG FORMATION

The lithology and structure of the Lockatong Formation is similar to that
of the Brunswick Formation. It consists of interbedded dark-gray argillite
and shale that dip to the northwest at an average angle of 20°. The rock is
fine grained and well cemented. As in the Brunswick Formation, the inter-
connected pore spaces are very narrow and most of the ground-water flow
is confined to a system of interconnected vertical joints and bedding-plane
fractures. However, the fractures are narrower and more widely spaced than
those in the Brunswick Formation. Yields of 15 wells that tap the Locka-
tong Formation ranged from 4 to 40 gpm, and the median yield was
10 gpm.

PUMPING TESTS

When a well is pumped, water levels in the area are lowered and a cone
of depression is formed in the piezometric surface or the water table. As
pumping continues, the cone of depression enlarges until one of the follow-
ing conditions exist: (1) The recharge of the aquifer has been increased by
an amount equal to the pumping rate, (2) the natural discharge from the
aquifer has been decreased by an amount equal to the pumping rate. (3)
The sum of the increased recharge and decreased natural discharge is equal
to the pumping rate.

Line AC on Figure 3 is a theoretical plot of drawdown against time in a
well pumping at a constant rate from a homogeneous isotropic aquifer of
infinite areal extent and uniform thickness. Other assumptions made in con-
structing the theoretical curve are: (1) the discharge well has an infinitesi-
mal diameter and completely penetrates the aquifer; (2) no recharge to the
aquifer occurs; (3) the water withdrawn from storage in the aquifer is dis-
charged instantaneously with decline in head; and (4) the coefficient of
transmissibility is constant at all places and all times.

A plot of recovery against time would coincide with a plot of drawdown
against time. If flow occurs under conditions different from those stated in
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the assumptions, the plotted curve will deviate from the theoretical curve.
For example, line AD in Figure 3 is one path the plotted data may follow
if the cone of depression expands to a recharge boundary and induces re-
charge from some outside source. The slope of this curve decreases from
that of the theoretical curve, indicating that drawdown has been diminished
due to the inflow of recharge. If the slope of the plotted curve increases from
that of the theoretical curve, as in line AB, the cone of depression has ex-
panded to an impermeable boundary—that is, an area that is less permeable
than the part of the aquifer near the pumping well. Many boundary condi-
tions can cause this. For example, the cone of depression reaches the end
of the aquifer and lateral expansion of the cone is stopped or retarded. The
presence of this type of boundary may be caused by a marked decrease in
the permeability of the aquifer at some distance from the well.

By means of a graphical technique that involves matching a theoretical
curve to plots of drawdown in wells versus time, it is possible to compute
the coefficients of transmissibility and storage for an aquifer.

The coefficient of transmissibility is a measure of the ability of the aquifer
to transmit water. It is defined as the quantity of water, in gallons per day,
that will flow through a vertical section of the aquifer 1-foot wide and ex-
tending the full height of the aquifer under a unit hydraulic gradient at the
prevailing temperature of the water.

The coefficient of storage of an aquifer is the volume of water it releases
from or takes into storage per unit surface area of the aquifer per unit
change in the component of head normal to that surface. Under water-table
conditions, the water released from storage is obtained by draining a part of
the aquifer. However, under artesian conditions, water is released from
storage by compression of the network of openings within the aquifer in re-
sponse to a decrease in head at a well. For this reason the coefficient of
storage of an artesian aquifer is many times smaller than that of a water-
table aquifer. The coefficients of storage for artesian aquifers range from
0.00001 to 0.001, and those of water-table aquifers range from 0.05 to
0.30.

Systematic aquifer tests to determine the hydraulic properties of the
Brunswick Formation were made at the following locations: Kulpsville,
North Wales, Spring City, Douglassville, Souderton, and Royersford. At
each of these sites one well was pumped at a constant rate for a period
ranging from several hours to several days while water levels were measured
in the pumped well and in one or more adjacent observation wells. After
pumping ceased, water levels in all these wells were measured again for an
equal length of time. Results of these tests, including the coefficients of
transmissibility and storage and the total drawdown during pumping, are
shown in Table 1.
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HYDROLOGY 19

Because hydrologic conditions in the Brunswick Formation do not ful-
fill the assumptions for an ideal aquifer, the coefficients of transmissibility
and storage calculated from these tests do not truly represent the aquifers
tested. Calculated transmissibility at a pumped well may be lower than the
actual transmissibility of the aquifer because of well entrance losses during
the test. On the other hand, excessively high transmissibilities computed at
observation wells for almost all the pumping tests show clearly the poor hy-
draulic connection between the pumped wells and the observation wells.
Despite this poor hydraulic connection, the measurement of water levels in
in observation wells and the calculation of transmissibility and storage co-
efficients are useful for estimating the effect of pumping upon nearby wells
—where the effect is controlled by recognizable geologic or topographic
features.

Tests at Kulpsville—In August 1960 well Mg-631, at Kulpsville, was
pumped for 48 hours at a constant rate of 140 gpm and wells Mg-632 and
Mg-633 were used for observation. Coefficients of transmissibility and stor-
age calculated from these tests are shown in Table 1. Observation well Mg-
632 is 730 feet from the pumped well in a direction parallel to the strike of
the beds, whereas observation well Mg-633 is the same distance from the
pumped well along a line perpendicular to the strike. Consequently, well
Mg-632 penetrates the same strata as the pumped well, but well Mg-633
penetrates entirely different strata.

Analysis of data from these wells indicates coefficients of transmissibility
of 5,000 gpd per foot at the pumped well (Mg-631), 40,000 gpd per foot
at the observation well along strike (Mg-632), and 180,000 gpd per foot
at the observation well perpendicular to strike (Mg-633). Poor hydraulic
connection between the pumped well and the observation wells is indicated
by these high transmissibilities calculated from the observation-well data.
A poor hydraulic connection is especially evident at observation well Mg-
633, perpendicular to the strike from the pumped well. Drawdown in this
observation well is caused by leakage from beds penetrated by the obser-
vation well to beds tapped by the pumped well.

The response in observation wells Mg-632 and Mg-633 to pumping at
well Mg-631 is shown in Figure 4. The graph shows that drawdown began
much sooner and drawdown was much greater in the observation well
(Mg-632) penetrating the same strata as the pumped well than in the ob-
servation well (Mg-633) penetrating different strata. In both observation
wells water levels declined more steeply than the theoretical curve, indicat-
ing the presence of an impermeable boundary. Drawdown in the pumped
well (not shown) declined more slowly than the theoretical curve, indicat-
ing the presence of a recharging boundary.

Tests at North Wales—Three pumping tests were made in North Wales.



BRUNSWICK FORMATION GROUND WATER

20

"€ZZ-BW pup Qg1-BW S|[oM U1 umopmpip jo ydosb StuyjupBoy g ainbiy

upbaq buidwnd 18440 s nuiw v ‘swiL
€698 L 9 § v € 2 0001 6 8L 9 & b € 00! 6 L 9 S ¥ £ 2 0l 6 v 168 L 9

1984 Ul ‘umopmo.ig

\
L o
s 7
6 & -4
[} 3
5%
e
. - & » <
o ° o
11 b O&
€ \ el o
11 lof 9
4 - \\ o 4
s S <
L1 ¥ b 9
ra \\ o O ”
8 5 = 6
" © o +
Bk




HYDROLOGY 21

Coefficients of transmissibility and storage calculated from these tests are
shown in Table 1. In September 1960, well Mg-56 was pumped for 4 hours
at a constant rate of 127 gpm. Water levels were observed in wells Mg-167,
Mg-179, Mg-180, and Mg-223.

Analysis of data from the pumped well (Mg-56) indicates a coefficient
of transmissibility of 1,100 gpd per foot, which is probably lower than the
actual transmissibility of the aquifer because of entrance losses at the well.

No drawdown took place at wells Mg-167 and Mg-179, which are more
than 2,500 feet from the pumped well and do not penetrate the same strata
as the pumped well.

The coefficient of transmissibility at observation well Mg-180, which is
1,200 feet from the pumped well, is 56,000 gpd per foot. At observation
well Mg-223, which is 1,700 feet from the pumped well, the coefficient of
transmissibility is 69,000 gpd per foot. The high transmissibilities at the ob-
servation wells suggest imperfect hydraulic connection with the pumped
well—even though observation well Mg-223 penetrates many of the same
strata as the pumped well, and well Mg-180 penetrates some of the same
strata. The plots of drawdown in wells Mg-180 and Mg-223 (Fig. 5) show
that drawdown started later in well Mg-223 than in well Mg-180, which
was nearer to the pumped well. However, after 4 hours of pumping the
drawdowns in both wells were almost identical—1.2 feet in Mg-180 and
1.1 feet in Mg-223. The drawdown plot in both observation wells indicated
the presence of a discharging boundary, whereas a recharging boundary
was observed in the plot of data from the pumped well, Mg-56.

In October 1960, well Mg-223 was pumped at a rate of 180 gpm for
101 hours, and wells Mg-56 and Mg-180 were used as observation wells.
The calculated transmissibility was 82,000 gpd per foot at observation well
Mg-180 and 56,000 gpd per foot at observation well Mg-56. Drawdown
started earlier in well Mg-180, nearest the pumped well, and total draw-
down was greater at this well (13.8 feet) then at well Mg-56 (7.4 feet).
Drawdown data at both observation wells showed the effects of discharging
boundaries.

A third pumping test conducted in October 1960, consisted of pumping
well Mg-167 at a constant rate of 152 gpm for 4 hours. Water levels were
measured at observation well Mg-179, which is 400 feet from the pumped
well and penetrates many of the same strata. Analysis of data from obser-
vation well Mg-179 indicates a coefficient of transmissibility of 51,000 gpd
per foot. The data from the pumped well were unsuitable for analysis.

Tests in Spring City—Well Ch-181, at the Pennhurst State School in
Spring City, was pumped at a constant rate of 225 gpm for 72 hours in
April 1963. Water levels were measured at observation wells Ch-144, Ch-
145, and Ch-147.
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HYDROLOGY 23

Analysis of data from the pumped well (Ch-181) indicates a coefficient
of transmissibility of 2,000 gpd per foot. Data from observation well Ch-
144, which is 830 feet from the pumped well and penetrates many of the
same strata, indicates a transmissibility of 6,000 gpd per foot. Data from
observation well Ch-145, which is 1,650 feet from the pumped well and
penetrates partly the same strata indicates a transmissibility of 13,000 gpd
per foot.

The water level was not drawn down in Ch-147, although this well pen-
etrates many of the same strata as the pumped well. This indicates the
complexity of the hydrology in this area.

Drawdown commenced considerably earlier and was greater in observa-
tion well Ch-145, which was farthest from the pumped well, than in obser-
vation well Ch-144. The most distant well (Ch-145) penetrates the same
strata as the lower part of the pumped well, whereas well Ch-144 pene-
trates the same strata as the upper part of the pumped well.

Tests at Douglassville.—Two pumping tests were conducted at Doug-
lassville. In July 1962, well Be-115 was pumped at a rate of 30 gpm for
67 hours, and water levels were observed in wells Be-115 and Be-125. The
two wells are 200 feet apart along the strike of the beds and are both 300
feet deep; hence, both wells penetrate the same strata. Analysis of data from
these wells indicated a cofficient of transmissibility of 100 gpd per foot at
the pumped well (Be-115) and 600 gpd per foot at observation well Be-
125. However, when Be-125 was pumped at a rate of 21gpm for 442 hours
in June 1963, analysis of data indicated a transmissibility of 1,100 gpd per
foot at Be-125 and 1,500 gpd per foot at observation well Be-115. These
determinations of transmissibility are not consistent—but they do indicate
a transmissibility of low magnitude.

When well Be-115 was pumped, data for both the pumped well and
observation well Be-125 showed recharging boundaries. However, when
well Be-125 was pumped, the data plot indicated no boundary conditions
for either well. Figure 6 shows two plots of the recovery of water-level in
well Be-115—one when the well was used as an observation well, and the
other when it was used as the pumped well.

Tests at Souderton.—Well Mg-665, in Souderton, was pumped at a rate
of 150 gpm for 69 hours in March 1961. Water levels were measured in
well Mg-665 and in observation well Mg-679, 400 feet away. Analysis of
data from this test indicated coefficients of transmissibility of 3,500 gpd
per foot at well Mg-665 and 9,000 gpd per foot at well Mg-679.

Although these two wells are only 400 feet apart, a dip of 60° measured
in a nearby outcrop suggests that the two wells do not penetrate the same
strata. However, because all other dips measured in the Brunswick Forma-
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tionare considerably less than 60°, this dip of 60° is anomalous and
possibly misleading. The relatively large drawdown in the observation well
(27.6 feet at the end of 69 hours), the relatively low transmissibility at the
observation well as compared with transmissibilities of observation wells
at other pumping sites, and the fact that the water level commenced drop-
ping less than 1 minute after pumping began all indicate that these wells
probably penetrate the same water-bearing strata.

Another pumping test was made in June 1961 when well Mg-665 was
again pumped at 150 gpm for 69 hours, and well Mg-679 was again the
observation well. Drawdowns in both wells were considerably greater in
June than in March. Drawdown in the pumped well (Mg-665) after 69
hours pumping was 17.5 feet more in June than in March. In the observa-
tion well (Mg-679) drawdown after 69 hours was 8.1 feet greater in June
than in March. A possible explanation for these differences in drawdown
may be the effect of recharge from Skippack Creek, which is less than
100 feet from the wells. In March, Skippack Creek was flowing and was a
possible source of induced recharge, but in June, Skippack Creek was dry
and was no longer a source of recharge.

Test at Royersford—Well Mg-542 at the Charles Johnson County
Home, Royersford was pumped for 3 hours at a constant rate of 55 gpm in
January 1962. Water-level measurements were made at observation well
Mg-541, 1,200 feet northwest of the pumped well. Analysis of data from
the observation well indicated a transmissibility of 30,000 gpd per foot
and the occurrence of an impermeable boundary. At the end of 3 hours of
pumping the water level had lowered only 0.61 feet. Because the data
obtained from the pumped well was unsuitable, it was not used for analysis.

Miscellaneous tests in the Brunswick Formation.—In addition to the
tests that involved the use of observation wells, nine pumping tests were
conducted on wells which had no nearby observation wells. The results of
these tests are given in Table 2. Calculated coefficients of transmissibility
are generally quite low. They range from 150 to 4,000 gpd per foot and
the median is 600 gpd per foot. Eight of the nine transmissibilities are less
than 1,000 gpd per foot.

Data plots of six tests indicated recharge boundaries, and only one in-
dicated a discharge boundary. One of the tests showed no boundaries,
and another test showed drawdown data too irregular for determination of
the boundary conditions.

Miscellaneous tests in the Lockatong Formation.—Pumping-test data are
available from six wells tapping the Lockatong Formation. (See Table 2.)
Five of these wells are in Bucks County, Pa., but results from these tests
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Table 2. Summary of pumping tests without observation wells in
the Brunswick and Lockatong Formations

Pumping Duration of Transmissibility
rate pumping T Boundary
Well Date (gpm) (hours) (gpd/ft) type

Brunswick Formation

Be-101 June 1963 13.8 4 670 Recharge
113 June 1963 20 4 900 Impermeable
114 June 1963 8.6 4 150 ...l

Mg-581 June 1963 17.7 4 600 Recharge
695 June 1963 3.4 1 180 Recharge
696 June 1961 5.1 1 750 Recharge
703 June 1963 22.2 4 500 Recharge
725 July 1962 136 1.25 4,000 None
729 Aug. 1963 14.6 3 140 Recharge

Lockatong Formation

Mg-699 June 1961 3.9 1 180 None

Bk-807 April 1961 2.0 1 70 Impermeable
814 May 1961 30 1.2 2,000 Impermeable
812 May 1961 5.5 1 60 Impermeable
822 May 1961 4.1 1 140 None
832 May 1961 2.6 1 160 None

are believed to be representative of the Lockatong Formation in the area
covered by this report. Coefficients of transmissibility are extremely low—
they range from 60 to 2,000 gpd per foot and the median is 150 gpd per
foot. Five of the six wells have transmissibilities of less than 200 gpd per
foot.

Discharge boundaries were encountered in three of the pumping tests.
In the remaining three tests no boundary conditions were indicated.

Discussion of pumping-test results—Because the Brunswick and Locka-
tong Formations are not ideal aquifers, coefficients of transmissibility and
storage computed by matching pumping test data to the theoretical curve
are not reliable. However, the pumping-tests in these formations do demon-
strate the effect of pumping upon water levels in the pumped well and in
nearby wells.

The high transmissibilities computed from the observation-well data re-
flect imperfect hydraulic connection between pumped wells and nearby
wells, but they are useful for estimating the effect other pumping wells will
have on water levels in their vicinities. They indicate also that interfer-
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ence between wells during brief periods of pumping may be somewhat less
in the Brunswick Formation than in an ideal aquifer. However, because im-
permeable boundaries appeared in the test data of almost all observation
wells, water levels in wells near a pumping well will probably draw down
to a greater extent than predicted by a transmissibility based on data from
the early part of a pumping test.

Wells located on a line perpendicular to the strike of the beds will
generally show much less interference than wells located on a line parallel
to the strike, because the former generally do not penetrate the same strata,
but the latter do. Drawdown in observation wells not penetrating the same
strata as a pumped well is caused by leakage from beds penetrated by the
observation wells to beds tapped by the pumped well.

QUALITY OF WATER

All ground waters contain dissolved minerals; some contain suspended
particles and pathogenic organisms. These ground-water constituents are
important because if they are present in excessive amounts they may limit
the usefulness of the water for some purposes and may necessitate treat-
ment of the water.

The chemicals dissolved in ground water are obtained from many
sources. Rain and snow, from which ground water is derived, absorb small
amounts of carbon dioxide and other gases in the atmosphere. In addition,
small particles of mineral matter in the form of dust are caught and carried
along with the precipitation; the quantity of material absorbed in this way,
however, is very small.

Upon reaching the land surface the water leaches mineral matter from
the organic residue of plants, from agricultural fertilizers, animal and
human wastes and from solid and semisolid refuse. The waters percolating
downward through the soil zone leach out the soluble products of soil
weathering. The quantity of mineral matter dissolved depends primarily on
the composition of the soil and of the percolating water which may carry
chemicals that stimulate dissolution. For example, carbon dioxide absorbed
from the atmosphere and decayed vegetable matter forms carbonic acid,
which aids in dissolving minerals from the soil. Other factors controlling
the quantity of matter dissolved are the length of time the water is in con-
tact with the soil, the surface drainage structure, the amount of precipita-
tion, and the temperature of the water.

Most of the mineral matter in ground water is dissolved from the rocks
through which it flows, because the water remains in contact with this
material for a longer time than with the atmosphere and soil. The contact
time is dependent on the ground-water velocity and the distance of the
ground water from the recharge area. High ground-water velocity occurs in
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rocks of high permeability or is associated with flow caused by steep
hydraulic gradients—a factor often influenced by the topography. Ground-
water velocity tends to decrease as depth below land surface increases, so
that the quantity of dissolved solids in the ground water at great depth
is usually much greater than that near the surface. The distance of the
water from the recharge area is controlled by the geology and physiographic
features.

Another major factor controlling the quantity of mineral matter dis-
solved by the ground water is the composition and texture of the rock itself.
Igneous rocks generally contain material less soluble than that in sedi-
mentary rocks. Fine-grained rocks having high porosity tend to increase
the opportunity for solvent action because the surface area of rock exposed
to solution is very large.

The mineral matter in ground water occurs in very small quantities and
exists either as electrically charged particles known as ions or as oxides in
the collodial state. Calcium (Ca), magnesium (Mg), sodium (Na), and
potassium (K) are commonly occurring positively charged ions or cations.
Bicarbonate (HCO:), carbonate (CO:), sulfate (SO:), chloride (C1),
fluoride (F), and nitrate (NOs) are common negatively charged ions or
anions. In addition to these ionized substances, small amounts of colloidal
matter—including silica (SiO:), iron (Fe), and manganese (Mn)—are
usually present.

To determine the chemical constitutents of the ground water in the
Brunswick and Lockatong Formations in Berks and Montgomery Counties,
water samples from 36 wells in the Brunswick and 6 wells in the Lockatong
were collected and analyzed. The results of these analyses are shown in
Tables 3 and 4.

The chemical character of the ground water in the two formations is
classified graphically on the trilinear diagrams of Figures 7 and 8.

In these diagrams the cations in solution are assumed to be calcium,
magnesium, sodium, and potassium, and the anions are assumed to be
bicarbonate, carbonate, sulfate, and chloride. Any minor constituents
present are summed with the major constituents to which they are chemic-
ally related.

The concentration of any cation or anion in a solution, in parts per
million (ppm) by weight, divided by its equivalent or combining weight
yields the equivalent weight of the ion per million parts by weight of the
solution and is generally termed equivalents per million (epm). Figures 7
and 8 show the percentage composition of the major cations and anions in
percentage equivalents per million.

In the diamond-shaped sections of Figures 7 and 8, points plotted in the
upper quarter of the diamond represent waters in which calcium and
magnesium are the principal cations and sulfate and chloride are the
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WATER-ANALYSIS DIAGRAM

Well number
(1) Be-102 [(10) Mg- 52
(2) -103 [(11) - 62
(3) C105 j(12) - 76
(4) -106 {13} Eail
(5) -107 ju4) -146
(6} -1 jus)  -148
(Y] -115 J{16) -190
(8) -116 |(1I7)  -540
(2) -118 J{18) -541
{9) - 55!
{20}  -557
(21)  -603
(22) -616
(23) -631
(24} -642
(25)  -e62
(26) -678
{27) - 680
(28) -689
(29)  -708
(30)  -709
{31) -710
(32) -71i
(33) -712
(34) -718
(35)  -736:
{36) -738

TAVAVA
AVAVAVAVAVA
AVAVAVAV

) &% % E3 ? < @ ®
CATIONS PERCENTAGE EQUIVALENTS ANIONS
PER MILLION

Figure 7. Diagram showing the chemical character of ground water in the Brunswick Forma-
tion in Berks and Montgomery Counties, Pa.

principal anions. Those points in the left quarter of the diamond represent
waters in which calcium and magnesium are the principal cations and car-
bonate and bicarbonate are the principal anions.

Figures 7 and 8 show that calcium and magnesium are the major cations
in the ground water of both the Brunswick and Lockatong Formations.
Except for two samples from the Brunswick Formation, the percentage
equivalents per million of calcium plus magnesium exceeds 80 percent of
the total cations present. Bicarbonate is the major anion in most of the
samples in the Brunswick Formation and in all the samples in the Locka-
tong Formation. The percentage equivalents per million of bicarbonate
exceeds 50 percent in 26 of the 36 samples from the Brunswick.

In all samples except two—those from Mg-739 in the Lockatong Forma-
tion and well Mg-631 in the Brunswick Formation—the percentage
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WATER-ANALYSIS DIAGRAM

Well
number
(37) Mg- 49
{38) -713
{39) -715
(40) -716
“@n -737
(42) -739

€ &

CATIONS PERCENTAGE EQUIVALENTS ANIONS
PER MILLION

Figure 8. Diagram showing the chemical character of ground water in the Lockatong Forma-
tion in Montgomery County, Pa.

equivalents per million of calcium plus magnesium exceeds the percentage
of bicarbonate. Therefore, some noncarbonate hardness (calcium or mag-
nesium sulfates and chlorides) exists in all samples except these two. The
relative amount of noncarbonate hardness present is indicated by the
numerical difference between the percentage of calcium plus magnesium
and the percentage of bicarbonate. The noncarbonate hardness for each
sample is given in Tables 3 and 4.

A comparison of the chemical quality of the ground water in the two
formations is shown in Table 5. The minimum, maximum, and median
values were computed from the 36 Brunswick analyses and the 6 Locka-
tong analyses shown in Tables 3 and 4, respectively. Because the number
of water samples from the Lockatong Formation in Montgomery County
is small in comparison to the number from the Brunswick Formation, five
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analyses of ground water from the Lockatong Formation in Bucks County
were also studied. The minimum, maximum and median values of all eleven
Lockatong analyses (Table 5) do not differ significantly from those of the
six analyses from Montgomery County.

The median values of chemical constituents generally are similar in
water from the Lockatong and Brunswick Formations. However, maximum
concentrations of several constituents—calcium, sodium, sulfate, dissolved
solids, and hardness—are considerably higher in water from the Brunswick
Formation than in water from the Lockatong Formation.

Certain of the chemical constituents in the ground water of the Bruns-
wick and Lockatong Formations are directly related to the total dissolved-
solids content. In Figure 9 both the calcium content and carbonate hard-
ness as CaCO: are plotted against the dissolved-solids content. Figure 10
shows the relation of magnesium content to dissolved solids. Figure 11 is a
plot of the sodium content against the dissolved solids. The relation of
bicarbonate and sulfate content to dissolved solids is shown in Figure 12.

In Figure 9 a single straight line was fitted to the plot of data showing
the relation of calcium content to dissolved solids. The calcium content
apparently increases linearly as the dissolved-solids content increases.

Appearing also on Figure 9 is a plot showing the relation of carbonate
hardness to dissolved-solids content. Carbonate hardness can be seen to
increase as dissolved-solids content increases.

Figure 10, a plot of magnesium content against dissolved solids shows
that magnesium content increases rapidly as the dissolved solids rise from
200 ppm to 350 ppm. Beyond this concentration, the magnesium content
does not show any clear relation to the dissolved-solids content.

Sodium content, as illustrated in Figure 11, tends to increase as dis-
solved-solids content increases. Figure 12 shows also that the three water
samples from the limestone fanglomerate of the Brunswick Formation con-
tain a much smaller amount of sodium than all other samples that contain
comparable quantities of dissolved solids.

Figures 9, 10, and 11 illustrate that the cations responsible for increases
in dissolved-solids content are calcium, magnesium, and sodium. However,
because the calcium content increases much faster than the magnesium and
sodium content as the dissolved solids increase, calcium is the major cation
causing the increase of dissolved solids.

Figure 13 is a plot of both the bicarbonate and sulfate content against
dissolved-solids concentration. The bicarbonate content does not appear
to bear any significant relation to the dissolved-solids content. The sulfate
content, however, increases linearly as dissolved solids increase throughout
the range of dissolved solids shown. Figure 12 shows that bicarbonate is
the major anion in waters containing less than 500 ppm dissolved solids,
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whereas sulfate is the major anion in waters containing more than 500 ppm
dissolved solids.

The concentration of other ions present—including potassium, chloride,
fluoride, and nitrate—bears no relation to the dissolved-solids content.
Graphs of these constituents are not shown.

Figure 13 is a plot of the specific conductance against the dissolved-
solids concentration of water from the Brunswick and Lockatong Forma-
tions. Two straight lines intersecting near 400 ppm dissolved solids were
constructed to represent the relation of these two variables.

Specific conductance is defined as the electrical conductance of a cube
of material one centimeter on a side and is commonly expressed as mi-
cromhos per centimeter. Specific conductance varies with temperature and
is, therefore, usually referenced to the standard temperature of 25°C.
Because ground-water is a dilute solution containing ionized substances, it
is slightly conductive. The specific conductance of such a soluion is related
to the quantity of dissolved solids that it contains.

The specific conductances used in Figure 13 were determined in a
laboratory. However, with suitable portable equipment the specific con-
ductance can be quickly and accurately measured in the field. The cor-
responding value of dissolved-solids content can then be estimated by using
Figure13. When the dissolved-solids content is known, the probable con-
centration of several major ionized constituents of most ground-water
samples obtained from the Brunswick and Lockatong Formations can be
approximated from Figures 9, 10, 11, and 12.

CONCLUSIONS

The yield of wells in the Brunswick Formation depends on the number,
thickness, and permeability of beds penetrated. Changes in the lithology
from place to place are responsible for variations encountered in well
yields. Because of the erratic nature of these changes, the location and
extent of the best water-bearing zones cannot be predicted; however, if
yields of more than 100 gpm are desired, wells should be drilled at least
200 feet deep—as the highest yields are obtained generally from wells
ranging in depth from 200 to 550 feet.

Water sufficient for domestic purposes can be obtained at almost any
location, but yields large enough for industrial and municipal purposes are
more difficult to obtain. To assure an adequate supply over long periods of
time, consideration must be given to factors that influence both the natural
and artificially induced flow of ground water. For example, the water table
is generally nearer the land surface in valleys than on ridges; hence, the
available drawdown at wells of equal depth is greatest for wells in valleys.
As natural flow from the aquifer is generally discharged into surface
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streams, the opportunity to reduce the natural discharge or to induce flow
from a stream to the aquifer by means of wells is greatest in stream valleys.

Unless ground water is recovered by either reducing natural discharge,
or inducing additional recharge, water withdrawn from a well reduces the
quantity in storage in the aquifer. Wells that draw water from storage over
long periods of time cause large cones of depression to develop. Where
several pumping wells are closely spaced, the cones of depression overlap.
As the total decline in water level at any well equals the sum of the draw-
downs produced by each well the interference may be so great that the
yield of each well is reduced. This effect is particularly severe at wells
oriented along lines parallel to the strike of the beds, because these wells
generally penetrate the same beds. Wells should be spaced sufficiently far
apart to reduce the effect of interference to an acceptable level. Because
geologic hydrologic, and pumping conditions within the Brunswick Forma-
tion are complex and variable, the best spacing of wells will differ from
place to place. Wells less than 2,000 feet apart in the Brunswick Formation
have generally shown some interference.

Yields greater than those required for domestic purposes are not gen-
erally available from wells in the Lockatong Formation. Furthermore, be-
cause the Lockatong Formation is very resistant to erosion, it underlies
areas of high elevation which are generally remote from surface streams.
Few situations exist, therefore, where ground water can readily be diverted
from points of natural discharge to nearby wells in the Lockatong.

One of the best ways to improve the yield of a well in the Lockatong, or
any other aquifer of low permeability, is to increase the volume of water
stored in the well bore by enlarging its diameter or drilling to greater
depth. Such a well permits the well operator to satisfy his need for water
during short periods of peak demand. For example, the volume of storage
in 100 feet of 6-inch diameter borehole is approximately 150 gallons, but
the volume of storage in 100 feet of a 10-inch diameter well is more than
400 gallons. By installing the pump intake pipe near the bottom of the well,
most of the water stored in the well bore can be withdrawn. During periods
when water is not being withdrawn, ground water flowing into the well will
replenish the stored volume—if given enough time.

The cone of depression developed by pumping wells in the Lockatong
Formation is rarely extensive. For this reason interference between wells
is not a severe problem.
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52 BRUNSWICK FORMATION GROUND WATER

Table 7. Sample logs of wells in the Brunswick Formation
in Berks and Montgomery Counties, Pa.

Well Be-125
Owner: U.S. Geological Survey
Depth
Description (feet)

17031 TR =Y 0— 2
Shale, T€d . ... i i e e 2— 30
Shale, red, moderately calcareous; calcite and quartz joint filling .. .. 30— 35
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 35— 38
Shale, Ted ...... ..o i s 38— 50
Shale, red, moderately calcareous; calcite joint filling .............. 50— 55
Shale, red, moderately calcareous .............................. 55— 60
Shale, red, moderately calcareous; calcite and quartz joint filling .. .. 60— 70
Shale, red, slightly calcareous ................................. 70— 75
Shale, red, slightly calcareous; quartz joint filling; goethite ........ 75— 80
Shale, red; calcite joint filling ........................ ... .. ... 80 — 90
Shale, red, slightly calcareous; calcite joint filling ................ 90 — 105
Shale, red, moderately calcareous; calcite joint filling ............ 105 — 110
Shale, purplish-gray, slightly calcareous ........................ 110 — 115
Shale, red; calcite joint filling ..................... ... ..., 115 — 120
Shale, red, slightly calcareous; calcite joint filling ................ 120 — 125
Shale, red, slightly calcareous ................................. 125 — 130
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 130 — 135
Shale, red, moderately calcareous; calcite joint filling ............. 135 — 140
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 140 — 145
Shale, red, slightly calcareous; calcite joint filling ................ 145 — 150
Siltstone, red, slightly calcareous .............................. 150 — 155
Shale, red, slightly calcareous; calcite and quartz joint filling; pyrite .. 155 — 160
Shale, red, slightly calcareous; calcite joint filling ................ 160 — 165
Shale, red, moderately calcareous; calcite joint filling .............. 165 — 170
Shale, red, slightly calcareous .............. ... . ... ... .. .... 170 — 175
Argillite, light gray, moderately calcareous; calcite joint filling; pyrite 175 — 178
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 178 — 182
Shale, red, slightly calcareous; calcite joint filling; pyrite .......... 182 — 185
Shale, red, slightly calcareous; calcite joint filling ................ 185 — 190
Shale, red, moderately calcareous; calcite joint filling; pyrite and

goethite . ..... ... .. ... i 190 — 195
Shale, red, slightly calcareous; calcite joint filling ................ 195 — 200
Shale, red, slightly calcareous; calcite and quartz joint filling ........ 200 — 205
Shale, red; calcite joint filling .................. ... .. ... . ... 205 — 215
Shale, red, slightly calcareous ................................. 215 —220
Argillite, purple and a few streaks of brown and green; calcite and

quartz joint filling; goethite ..................... .. ... ... 220 — 225
Shale, red, slightly calcareous; calcite joint filling ................ 225 —227
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 227 — 230
Shale, red, slightly calcareous; calcite joint filling ................ 230 — 240
Shale, red, moderately calcareous; calcite joint filling ............ 240 — 243
Shale, red, slightly calcareous; calcite joint filling ................ 243 — 265
Shale, red, slightly calcareous; calcite joint filling pyrite and goethite 265 — 273
Shale, red, slightly calcareous; calcite joint filling ................ 273 — 280

Shale, gray-brown, moderately calcareous; calcite joint filling; goethite 280 — 282
Argillite, blue-gray, moderately calcareous; calcite joint filling; goethite 282 — 285
Argillite, greenish-gray, moderately calcareous; calcite joint filling;

goethite; very fine grained sandstone, yellow, moderately calcareous 285 — 287
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Table 7. Sample logs of wells in the Brunswick Formation—Continued

Well Be-125—Continued
Argillite, greenish-gray, moderately calcareous; calcite joint filling;

PYIItE e 287 — 288
Argillite, purplish-brown; goethite .............................. 288 — 290
Shale, red, moderately calcareous; calcite joint filling ............ 290 — 292
Shale, red, slightly calcareous; calcite joint filling ................ 292 — 294
Shale, red . ... ..o e e 294 — 296
Shale, red, slightly calcareous; calcite joint filling ................ 296 — 300

Well Mg-632
Owner: U.S. Geological Survey

Depth

Description (feet)
SOl Ted ... e 0— 2
Shale, red, moderately calcareous; calcite joint filling . ............ 2— 5
Shale, red, slightly calcareous ................... ... ... ... ..., 5— 10
Shale, red, slightly calcareous; calcite joint filling ................ 10— 15
Shale, red, slightly calcareous ................................. 15— 18
Shale, red, slightly calcareous; calcite joint filling ................. 18— 25
Shale, red, moderately calcareous; calcite joint filling ............. 25— 30
Shale, red, slightly calcareous; calcite joint filling ................ 30— 40
Shale, red, slightly calcareous .......... ... ... ... ... ... ... ..., 40— 45
Shale, red, moderately calcareous; calcite joint filling ............. 45— 52
Shale, red, slightly calcareous; calcite joint filling .................. 52— 85
Shale, red, moderately calcareous; calcite joint filling .............. 85— 90
Shale, red, slightly calcareous, micaceous; calcite joint filling ...... 90 — 95
Shale, red, slightly calcareous, micaceous; quartz and calcite joint

filling .. ... 95 — 100
Shale, red, slightly calcareous, micaceous; calcite joint filling ...... 100 — 110
Siltstone, red, moderately calcareous, micaceous; calcite and quartz

joint filling ....... ... i 110 — 120
Shale, red, slightly calcareous; calcite and quartz joint filling ........ 120 — 125
Shale, red, moderately calcareous, micaceous; calcite joint filling .... 125 —130
Shale, red, moderately calcareous; calcite joint filling .............. 130 — 135
Shale, red, moderately calcareous ................ ... ... ... 135 — 140
Shale, red, slightly calcareous; calcite joint filling ................ 140 — 170
Shale, red, slightly calcareous; calcite and quartz joint filling ....... 170 — 185
Shale, red, moderately calcareous; calcite joint filling ............. 185 — 200
Siltstone, red, slightly calcareous, micaceous; calcite joint filling .... 200 —210
Shale, red, slightly calcareous, micaceous; quartz joint filling ...... 210 — 215
Shale, red, slightly calcareous, micaceous; quartz and calcite joint

filling ... e 215 —220
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 220 — 225
Shale, red, slightly calcareous; calcite joint filling ................ 225 — 235
Shale, red, slightly calcareous .................................. 235 — 240
Shale, red; calcite joint filling .............. ... oo il 240 — 250
Shale, red; calcite and quartz joint filling .............. ... ... ... 250 — 260
Shale, red, slightly calcareous; calcite joint filling ................ 260 — 290

Shale, red, moderately calcareous .................c..viiinin..... 290 — 300
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Table 7. Sample logs of wells in the Brunswick Formation—Continued
Well Mg-632—continued

Shale, red, slightly calcareous ..................... ... ... ... 300 — 310
Shale, red, slightly calcareous; quartz and calcite joint filling ........ 310 — 315
Siltstone, buff, moderately calcareous; red shale; quartz joint filling .. 315 —320
Shale, red, slightly calcareous, micaceous; calcite joint filling ...... 320 — 325
Shale, red, slightly calcareous, micaceous; calcite and quartz joint

filling ... 325 — 330
Shale, red, slightly calcareous; calcite joint filling ................ 330 — 335
Shale, red, micaceous; calcite and quartz joint filling .............. 335 —340
Shale, red moderately calcareous; calcite and quartz joint filling .... 340 -—345
Shale, red, moderately calcareous; calcite joint filling .............. 345 — 350
Shale, red, slightly calcareous; calcite joint filling ................ 350 — 360
Shale, red, micaceous; calcite and quartz joint filling .............. 360 — 363
Shale, red, moderately calcareous; calcite joint filling .............. 363 — 370
Shale, red, slightly calcareous ................................. 370 — 375
Shale, red, slightly calcareous; calcite joint filling ................ 375 —379
Shale, green, moderately calcareous ............................ 379 — 381
Shale, red, slightly calcareous; calcite joint filling ................. 381 — 385
Shale, red, slightly calcareous ................................. 385 — 405
Shale, red, slightly calcareous; calcite joint filling ................ 405 — 425
Shale, red, slightly calcareous .............. .. ... o.oiiiiia.. 425 — 450
Shale, red, slightly calcareous; calcite joint filling ................ 450 — 460
Shale, red, slightly calcareous; calcite and quartz joint filling ........ 460 — 465
Shale, red, slightly calcareous .......................... ... .... 465 — 470
Shale, red, slightly calcareous; calcite joint filling ................. 470 — 475
Shale, red, moderately calcareous; calcite joint filling .............. 475 — 480
Shale, red, slightly calcareous ................ ... ............. 480 — 490
Shale, red, moderately calcareous; calcite joint filling ............. 490 — 500

Well Mg-633
Owner: U.S. Geological Survey
Depth
Description (feet)

Shale, red; quartz joint filling ................ ... ... ...l 0— 5
Shale, red, slightly calcareous, calcite joint filling .................. 5— 20
Shale, red, moderately calcareous; calcite joint filling .............. 20— 25
Shale, red, slightly calcareous; calcite joint filling ................ 25— 30
Shale, red, moderately calcareous ..................... .. ... ... 30— 35
Shale, red, moderately calcareous; calcite joint filling .............. 35— 40
Shale, red; calcite joint filling ................... ... .. ... ... .. 40— 45
Shale, red, slightly calcareous; calcite joint filling ................ 45— 55
Shale, red, slightly calcareous; goethite .......... .............. 55— 60
Shale, red, slightly calcareous; calcite joint filling ................ 60— 70
Shale, red, slightly calcaerous ...................... ... ... ... 70— 90
Shale, red, moderately calcareous; calcite joint filling .............. 90 — 100
Shale, red; calcite joint filling ................. ... ... ... ... 100 — 105
Shale, red, slightly calcareous; abundant quartz and calcite joint filling.

Quartz is in crystals up to half aninch long .................... 105 — 108
Shale, red, slightly calcareous; calcite joint filling ................ 108 — 110
Shale, red, slightly calcareous; abundant calcite joint filling ........ 110 — 112

Shale, red, slightly calcareous; calcite and quartz joint filling and
goethite ......ooiiiuiiiiii e 112 — 115
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Table 7. Sample logs of wells in the Brunswick Formation—Continued

Well Mg-633—continued

Shale, red; calcite joint filling ........... ... .. ... ... .. ... ...
Shale, red ... o e e
Shale, red, slightly calcareous ................ ... ... L
Shale, red ... ... . i e e e
Shale, red, moderately calcareous; calcite joint filling ............
Shale, red, slightly calcareous .................................
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red, slightly calcareous ................ ... ... iuin...
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red, slightly calcareous ............ ... i,
Shale, red, slightly calcareous; calcite joint filling and goethite . ... ..
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red, slightly calcareous .................................
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red; calcite joint filling .............. ... .. ... .. ... . ...
Shale, red ... .o i e e
Shale, red, moderately calcareous .................. ... ... ......
Shale, red, moderately calcareous; calcite joint filling ..............
Shale, red; calcite joint filling ......... ... ... ... .. ..
Shale, red, slightly calcareous; calcite joint filling .................
Shale, red; calcite joint filling ............ ... ... . ..l
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red, slightly calcareous; calcite and quartz joint filling
Shale, red, slightly calcareous; calcite joint filling
Shale, red; calcite joint filling ............. ... .. ... ... .. ...,
Shale, red: calcite and quartz joint filling and goethite ............
Shale, red, moderately calcareous; quartz and calcite joint filling .. ..
Shale, red; calcite joint filling ............ ... ... ... ... ... ...
Shale, red, moderately calcareous; calcite joint filling
Shale, red; calcite joint filling ................ .. ... ... ...,
Shale, red, slightly calcareous; calcite joint filling
Shale, red, slightly calcareous
Shale, red; calcite joint filling ......... ... .. ... ... . ...
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red . ..ot
Shale, red, slightly calcareous; calcite joint filling ................
Siltstone, red, moderately calcareous; calcite joint filling ..........
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red; calcite joint filling ............. ... . ... ... ... ...
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red, slightly calcareous ............. ... . ... ... .. ...
Shale, red; calcite joint filling ............ ... .. ... ... o
Shale, red . ... e e
Shale, red; calcite joint filling .................... ... ... .. ...
Shale, red, slightly calcareous; calcite joint filling ..................
Shale, red, moderately calcareous; calcite joint filling ............
Shale, red, slightly calcareous ...................... ... uuu.
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red, slightly calcareous; quartz joint filling ................
Shale, red, slightly calcareous ............. ... . ... ...
Shale, Ted . ..ot e e e e e
Shale, red; calcite joint filling .................. ... ... ... ..l
Shale, red, slightly calcareous; calcite joint filling ................
Shale, red, slightly calcareous ..............ccooiiiiiiniainnn,
Shale, red, slightly calcareous; calcite joint filling ................

115—118
118 — 120
120 — 123
123 — 125
125 — 128
128 — 138
138 — 140
140 — 142
142 — 148
148 — 150
150 — 152
152 — 165
165 — 168
168 — 170
170 — 172
172 — 175
175 — 178
178 — 185
185 — 205
205 —210
210 —212
212 —215
215 —220
220 — 225
225 —230
230 — 232
232 —233
233 —235
235 — 237
237 —240
240 — 243
243 — 245
245 — 263
263 — 270
270 — 275
275 — 278
278 — 280
280 — 283
283 — 288
288 — 290
290 — 295
295 —300
300 — 302
302 — 307
307 — 310
310 —312
312—314
314 —325
325 —327
327 —330
330 — 335
335 —348
348 — 350
350—355
355 —3s58
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Table 7. Sample logs of wells in the Brunswick Formation—Continued
Well Mg-633—Continued

Shale, red; calcite joint filling ............... ... ... ... .. ... 358 — 360
Shale, red, moderately calcareous .................. ... . ... ... 360 — 362
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 362 — 365
Shale, red; calcite joint filling ............... ... ... ..., ... 365 — 380
Shale, red, moderately calcareous .................cooviiiiii... 380 — 383
Shale, red, moderately calcareous, micaceous .................... 383 — 385
Shale, red, slightly calcareous; calcite joint filling ................ 385 —390
Shale, red, slightly calcareous ...............oooiiia, 390 —392
Shale, red ... ... 392 —1395
Shale, red, slightly calcareous .............. ..., 395 — 402
Shale, red, moderately calcareous; calcite joint filling ............ 402 — 405
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 405 — 408
Shale, red, moderately calcareous ...............ccoiiiiniiinn 408 — 410
Shale, red, slightly calcareous ....................... . ... ..... 410 — 412
Shale, red, slightly calcareous; calcite joint filling ................ 412 — 415
Shale, red, moderately calcareous; calcite joint filling .............. 415 — 417
Shale, red, slightly calcareous; calcite joint filling, pyrite and goethite 417 — 420
Shale, red, slightly calcareous .................. ... ... L, 420 — 422
Shale, red, slightly calcareous; calcite joint filling ................ 422 — 428
Shale, red, slightly calcareous .............. ... .. ...l 428 — 430
Shale, red ..... .. e e 430 — 432
Shale, red, slightly calcareous; calcite joint filling ................ 432 — 435
Shale, red, moderately calcareous; calcite joint filling ............ 435 — 437
Shale, red, slightly calcareous; calcite joint filling ................ 437 — 460
Shale, red; calcite joint filling ................................. 460 — 465
Shale, red; calcite joint filling, pyrite and goethite ................ 465 — 467
Shale, red, slightly calcareous; calcite and quartz joint filling ....... 467 — 470
Shale, red, slightly calcareous ...................ccoiieeeioo.... 470 — 473
Shale, red, slightly calcareous; calcite joint filling ................ 473 — 497
Shale, red ... ... 497 — 500
Well Mg-679
Owner: Souderton Borough
Depth
Description (feet)

Shale, red ... ... i 0— 40
Shale, red, moderately calcareous; calcite joint filling ............ 40 — 100
Shale, dark reddish-gray, slightly calcareous ..................... 100 — 110
Shale, red, slightly calcareous; calcite joint filling and pyrite ........ 110 — 120
Shale, red, slightly calcareous; calcite joint filling ................ 120 — 130
Shale, dark red, moderately calcareous ..................ooo..... 130 — 140
Shale, red, slightly calcareous; calcite joint filling ................ 140 — 180
Argillite, blue-gray, slightly calcareous; calcite joint filling. Thin beds

of red shale are in this interval ................ ... ... ... 180 — 190
Argillite, blue-gray, moderately calcareous; calcite and quartz joint

filling. About 4 feet of this interval is red shale ................ 190 — 200
Sandstone, gray, very fine grained; calcite joint filling and pyrite .... 200—210
Argillite, blue-gray, moderately calcarous; calcite joint filling and

PYIItE Lo 210 — 230
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Table 7. Sample logs of wells in the Brunswick Formation—Continued
Well Mg-679—Continued

Siltstone, blue-gray, slightly calcareous; pyrite ................... 260 — 270
Argillite, blue-gray, moderately calcareous; pyrite. Red shale, moder-

ately calcareous; calcite joint filling and pyrite ................ 270 — 278
Argillite, blue-gray, moderately calcareous; pyrite ................ 278 — 285
Shale, reddish-brown, moderately calcareous; About 4 feet of this

interval is blue-gray, moderately calcarous argillite ............ 285 — 308

Well Mg-700
Owner: Stanley G. Flagg, Inc.
Depth
Description (feet)

Bl 0— 20
Sandstone, buff, fine grained. About half of this interval is red shale 20— 30
Shale, red, MiCACEOUS .. ...t v ittt e e e e 30— 60
Shale, red . ... .o e e 60 — 90
Shale, red, slightly calcareous; quartz joint filling ................ 90 — 100
Shale, red, slightly calcareous ..............ccoiiiiiiiiiion.., 100 — 130
Shale, dark brown, slightly calcareous .......................... 130 — 140
Shale, red, slightly calcareous ............ ..., 140 — 150
Shale, red, moderately calcareous ................ ... ... ... ..... 150 — 160
Shale, red; calcite joint filling ............. ... ..o i 160 — 170
Shale, red, slightly calcareous ................................ 170 — 190
Shale, red, moderately calcareous ...l 190 — 200
Shale, red, moderately calcareous, micaceous; calcite joint filling .... 200 — 250
Shale, red, micaceous; calcite joint filling ....................... 250 — 260
Shale, red, slightly calcareous; calcite joint filling ................ 260 — 280
Shale, gray-brown, slightly calcareous; micaceous; calcite joint filling 280 — 290
Shale, red, slightly calcareous; calcite joint filling ................ 290 — 330
Siltstone, red, slightly calcareous; calcite joint filling .............. 330 — 340
Shale, red, moderately calcareous ................ccoiiiiin.... 340 — 350
Shale, red, moderately calcareous; calcite joint filling ............ 350 — 360
Siltstone, red, moderately calcareous; calcite joint filling .......... 360 — 370
Shale, red, moderately calcareous; calcite joint filling ............ 370 — 390
Shale, red, moderately calcareous; calcite and quartz joint filling .... 390 — 400
Shale, red, moderately calcareous; calcite joint filling ............ 400 — 456
Sandstone, white, fine grained .............. ... ... o 456 — 461
Shale, red, moderately calcareous; calcite joint filling ............ 461 — 480
Argillite, blue-gray, moderately calcareous, interbedded with about 3

feet of buff sandstone .............. ... . .. il 480 — 500
Sandstone, light-brown, fine grained ............................ 500 — 510
Sandstone, light-brown, medium grained ........................ 510 — 520
Shale, brown, slightly calcareous, micaceous; calcite joint filling .... 520 —530
Shale, brown, slightly calcareous, micaceous; quartz joint filling .... 530 — 540
Shale, red, moderately calcareous; calcite joint filling .............. 540 — 560
Shale, red, moderately calcareous; calcite and quartz joint filling .... 560 — 600
Shale, red, slightly calcareous; calcite joint filling ................ 600 — 610
Shale, red, moderately calcareous; calcite joint filling. About 1 foot

of this interval is buff, fine grained sandstone .................. 610 — 620

Shale, red, moderately calcareous; calcite joint filling ............. 620 — 640
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Table 7. Sample logs of wells in the Brunswick Formation—Continued

Well Mg-704
Owner: Lansdale Municipal Authority
Depth
Description (feet)
Shale, red ... cvii it i e e e e e 0— 10
Shale, red, slightly calcareous; calcite joint filling ................ 10— 20
Shale, red . ... oot e e e 20— 40
Shale, red, slightly calcareous .................cooiiiiiiin..o.. 40— 50
Shale, red, slightly calcareous; calcite joint filling ................ 50— 70
Shale, red, moderately calcareous; calcite joint filling .............. 70 — 80
Shale, red, slightly calcareous; calcite joint filling ................ 80 — 140
Shale, red, moderately calcareous; calcite joint filling ............. 140 — 190
Shale, red, slightly calcareous; calcite joint filling ................ 190 — 200
Shale, red, slightly calcareous; calcite joint filling and pyrite ........ 200 —210
Shale, red, slightly calcareous; calcite joint filling ................ 210 — 220
Siltstone, red, slightly calcareous; goethite ...................... 220 —230
Argillite, blue-gray to greenish-gray, slightly calcareous; calcite joint
filling and goethite ............ ... .. ... . il 230 — 240
Shale, gray-brown, slightly calcareous; calcite joint filling and goethite 240 — 250
Shale, red, moderately calcareous; calcite joint filling and goethite .. 250 — 260
Shale, red, moderately calcarcous; calcite joint filling ............ 260 — 290
Shale, red, slightly calcareous; calcite joint filling, pyrite and goethite 290 -—310
Shale, red, slightly calcareous; calcite joint filling ................ 310—330
Argillite, blue-gray, moderately calcareous; calcite joint filling and
PYTItE oo e e e 330 — 360
Argillite, blue-gray, moderately calcareous; calcite joint filling and
goethite ....... ... i 360 — 370
Well Mg-725
Owner: Schwenksville Water Co.
Depth
Description (feet)
Shale, red, slightly calcareous; calcite joint filling ................ 0— 20
Shale, red, slightly calcareous; quartz joint filling, pyrite and goethite 20 — 30
Shale, red, moderately calcareous; calcite joint filling, pyrite and
goethite . ... ... 30— 40
Shale, red, slightly calcareous; joint filling ...................... 40— 50
Shale, red, a few green spots, moderately calcareous .............. 50— 60
Shale, red, moderately calcareous. About 4 feet of this interval is
purplish-brown ...... .. i i e 60— 70
Shale, red, slightly calcareous; calcite joint filling ................ 70 — 80
Shale, red, moderately calcareous; calcite and quartz joint filling .... 80— 90
Shale, red, slightly calcareous; quartz joint filling ................ 90 — 100
Shale, red, moderately calcareous; calcite joint filling ............. 100 — 110
Shale, red, slightly calcareous; calcite and quartz joint filling ...... 110 — 120
Shale, red, slightly calcareous; calcite joint filling ................ 120 — 150
Shale, red, slightly calcareous .............covvivieiennnnnnn... 150 — 160
Shale, red, slightly calcareous; calcite joint filling ................ 160 — 180
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Table 7. Sample logs of wells in the Brunswick Formation—Continued
Well Mg-725—Continued

Shale, red, slightly calcareous; calcite and quartz joint filling ....... 180 — 190
Shale, red, slightly calcareous; calcite joint filling ................ 190 — 200
Shale, red, moderately calcareous; calcite and quartz joint filling .... 200—210
Shale, red, moderately calcareous; calcite joint filling ............. 210 — 220
Shale, red, slightly calcareous; calcite joint filling ................ 220 — 240
Shale, red; calcite joint filling .................. ... ... ... ... 240 — 250

Shale, red, slightly calcareous; calcite joint filling ................ 250 — 290
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