

# Landscape Tree Appraisal 

Michael N. Dana

## Appraising the Monetary Value of Landscape Plants

Landscape plants serve functional and esthetic roles in rural, urban commercial, or residential landscapes. Such plants have market value much like real estate, but that value is often difficult to determine. In the case of loss of landscape plants, however, it may be necessary to establish a monetary value to validate an insurance claim or to justify a loss to the Internal Revenue Service.

Appraisal of landscape plants is not a precise process. Often, the opinion of an expert plantsman or consulting arborist is required, especially in the case of claims, which are decided through litigation. However, homeowners can get some idea of the value of their landscape plants by following the procedures outlined in this bulletin. In some cases, a value determined by the homeowner may be sufficient to settle a claim, or to satisfy the IRS.

Three different methods are used by professionals to arrive at a value for landscape plants. Select the simplest method, which is appropriate to the size and number of landscape plants for which a value is required.

## Decrease in Assessed Value of Real Estate

When many plants are affected on a piece of property, or when a dominant landscape element is lost, then the change in assessed valuation may be the best indicator of value. Ask a realtor or land appraiser to assess the property with and without the plant or plants affected. A good, recent photograph of the landscape is valuable in establishing the property status before the loss.

## Replacement Cost

Small trees or shrubs that are easily transplanted at their full size can be appraised by determining the cost of replacement. A local nurseryman can quote replacement costs, which should include removal of the dead or damaged plant, installation, post-transplanting care, and a survival guarantee. If the plant was in poor condition prior to the loss, the appraised value may be less than the full cost of replacement.

## Formula Computation

The formula method is in widespread use for large, individual trees, which exceed the size that is usually transplanted. It is a hybrid of the replacement cost method and a process of extending that cost to larger plants. The guidelines for this method are distributed by the Council of Tree \& Landscape Appraisers and are accepted by professionals in the landscape industry and the real estate and legal disciplines.

The formula is as follows:
Tree Value $=$ Base Value $\times$ Cross Section Area $\times$ Species Class $\times$ Condition Class $\times$ Location Class

## Base Value

Base Value is the dollar amount assigned to one crosssection unit (square inch or square centimeter) of a tree's trunk cross-section area. It is based on the cost of the largest available replacement plant of similar species. To compute the base value, find the cost (usually the installed price) of a replacement-size tree from a local nursery or landscape company. Then, divide that amount by the trunk cross-sectional area of the replacement tree. That amount is the base value for that cross-sectional unit. For example, if a 2 inch trunk diameter replacement tree will cost $\$ 150$ installed, then
divide $\$ 150$ by 3.1 sq.in. (from Table 1) to determine that one square inch of cross-sectional area is valued at $\$ 48.40$ (rounded to the nearest dime).

| Table 1. Diameter and Cross Section Area of Tree Trunks.InchesCentimeters |  |  |  |
| :---: | :---: | :---: | :---: |
| Trunk | Cross-Section | Trunk | Cross-Section |
| Diameter | Area | Diameter | Area |
| 2 | 3.1 | 5 | 19.6 |
| 4 | 12.6 | 10 | 78.5 |
| 6 | 20.3 | 15 | 176.7 |
| 8 | 50.3 | 20 | 314.2 |
| 10 | 78.5 | 25 | 490.9 |
| 12 | 113.1 | 30 | 706.9 |
| 14 | 153.9 | 35 | 962.1 |
| 16 | 201.1 | 40 | 1256.6 |
| 18 | 254.5 | 45 | 1590.4 |
| 20 | 314.2 | 50 | 1963.5 |
| 22 | 380.1 | 55 | 2375.8 |
| 24 | 452.4 | 60 | 2827.4 |
| 26 | 530.9 | 65 | 3318.3 |
| 28 | 615.8 | 70 | 3848.5 |
| 30 | 706.9 | 75 | 4417.9 |
| 32 | 804.3 | 80 | 5026.6 |
| 34 | 907.9 | 85 | 5674.5 |
| 36 | 1017.9 | 90 | 6361.7 |
| 38 | 1134.1 | 95 | 7088.2 |
| 40 | 1256.6 | 100 | 7854.0 |

Cross-Section Area is used to express tree size. It is the crosssectional area of the tree trunk measured about one foot ( 30 cm ) above ground level for trees with trunk size up to 12 inches ( 30 cm ) in diameter, or at about $41 / 2$ feet ( 140 cm ) above ground level for trees with greater than 12 inch $(30 \mathrm{~cm})$ trunk diameter. Cross-section area can be calculated from trunk diameter by using the formula diameter ${ }^{2} \times 0.7854$. It can be computed in either square inches or square centimeters. Cross-section areas for trunk diameters ranging from 2 inches to 40 inches and 5 cm to 100 cm are listed in Table 1.

Abnormal trunk structures such as low-branch crotches or forked trunks, burls, or wound scars at the prescribed location for diameter measurement require that the measurement be taken at a different location. Typically, such measurements are made 6 to 12 inches ( 15 to 30 cm ) below the abnormality.

A multi-stemmed tree is measured as separate trunks and then a combined size value is computed. Compute the cross-section areas for all but the largest stem, add them together, and multiply that total by 0.50 . Add that value to the cross-section area of the largest stem. The result is a multi-stemmed cross section area value.

## Species Class

Species Class is an assigned value based on all the landscape merits of a landscape tree species and its accompanying potential for problems. Criteria used in determining species class include form, color, growth habit, flowering and
fruiting characteristics, structural strength, longevity, insect and disease resistance or susceptibility, and maintenance requirements. Each tree species can be assigned any value from $1 \%$ to $100 \%$ but for practical simplicity, species are usually placed in one of five percentage classes ( $100,80,60,40,20$ ). Table 2 is a listing of species class values for many common landscape trees of Indiana. Express the class as a decimal for use in the formula. Thus, 80 becomes $0.80,100$ becomes 1.00 , etc.

## Condition Class

Condition Class is a factor indicating the health, vigor and life expectancy of a tree, as well as its quality of form relative to a "perfect specimen" of that species. This value can be any percentage from $1 \%$ to $100 \%$, but is commonly expressed as one of five percentage categories ( $100,80,60$ to $40,20,0$ ). The rating is based on such defects as wounds, decay, storm damage, insect or disease damage, and poor form. Very few trees are perfect specimens. However, it is possible to improve condition class if proper cultural treatments are given.

The accuracy of the value assigned for tree condition is dependent on the expertise of the appraiser. It is this judgement which may be most difficult for the nonprofessional to make. Damage to the trunk, for example, may significantly reduce a tree's life expectancy, or the damage may be superficial; and while unsightly, it may not indicate a poorer condition and shortened life span. Professional consultation may be necessary to determine this factor. Table 3 can serve as a guide in assigning condition class values.

## Location Class

Location Class is based on the functional and aesthetic contribution, which the tree makes to the site, the placement of the tree on the site, and the importance of the location in the landscape context of the community. This factor can be rated at any percentage from $1 \%$ to $100 \%$. Table 4 can be used as a beginning point by assigning a value based on location. Judgement will be required to incorporate functional, aesthetic, and placement quality into the value. Use these considerations to determine a specific value from the ranges presented in the table. The elements of location class are:

1. Site location. Identical trees on two different sites may be valued quite differently. For example, a large, healthy tree in a remote location on a golf course fairway would not rate as highly as the same tree in a residential yard.
2. Functional and aesthetic value. Trees function as visual screens, windbreaks, climate moderating elements, architectural elements, sculpture, background, framing and unifying elements, in air purification, and can provide cover for wildlife. An evaluation of the tree's role in the landscape is essential to accurately assign a location value.
3. Plant placement. A plant's value may be diminished by a location, which interferes with utility lines, is deleterious to other trees, or is a safety hazard or public nuisance.

Table 2. Species Class Values for Some Indiana Landscape Trees. Common Name Botanical Name Species Class Evergreen Conifers
Arborvitae (White Cedar) Thuja spp. 60
*Cedar of Lebanon
Douglas Fir
*False Cypress
Fir, Balsam
Fir, White
Hemlock, Canada (eastern)
Juniper, Chinese
Juniper, American (red cedar)
Pine, Austrian
Pine, Eastern White
Pine, Jack
Pine, Red (Norway)
Pine, Scots
*Pine, Virginia
Spruce, Black Hills
Spruce, Colorado Blue
Spruce, Norway
Spruce, Serbian
Spruce, White

## Yews

Broad-Le
Alder, Black
Ash, Blue
Ash, Green
Ash, Green, Seedless
Ash, White
Bald Cypress, Common
Beech, American
Beech, European
Birch, Cutleaf European
Birch, European White
Birch, Paper (White)
Birch, River
Blackhaw
Boxelder (Male Tree)
Buckeye, Ohio
Buckthorn, European
Buckthorn, Glossy
Butternut
Catalpa, Northern
Catalpa, Southern
Cherry Plum
Cherry, Black
Cherry, Pin
Chestnut, Chinese
Chokecherry
Chokecherry, Shubert's
Coffee-tree, Kentucky
Corktree, Amur
Cottonwood, Eastern
Crabapples (Ornamental)
(Scab resistant)
(Scab susceptible)
Cucumbertree
Dogwood, Alternate-leaved
Dogwood, Flowering
Dogwood, Japanese
Elm, American
Elm, Siberian
Elm, Slippery (Red)
Ginkgo $\begin{aligned} & \text { (Male Tree) } \\ & \text { (Female Tree) }\end{aligned}$
*Golden Chain Tree
Goldenraintree
Gum, Black
Hackberry
Hawthorns
(rust resistant) (scab resistant)
Hickory, Bitternut
Hickory, Shagbark
*Holly, American
Honeylocust, Common
Honeylocust, Thornless
and Cultivars
$\begin{array}{lr}\text { Thuja spp. } & 60 \\ \text { Cedrus libani } & 100\end{array}$
$\begin{array}{lr}\text { Cedrus libani } & 100 \\ \text { Pseudotsuga menziesii } & 100\end{array}$
$\begin{array}{lr}\text { Pseudotsuga menziesii } & 100 \\ \text { Chamaecyparis spp. } & 80\end{array}$
Abies balsamea 40
Abies concolor 100
Tsuga canadensis 100
Juniperus chinensis 40
Juniperus virginiana 60
Pinus nigra
Pinus strobus
Pinus banksiana
Pinus resinosa
Pinus sylvestris
Pinus virginiana
Picea glauca "Densata"
Picea pungens
Picea abies
Picea omorika
Picea glauca
Taxus spp.
Alnus glutinosa
Fraxinus quadrangulata
Fraxinus pennsylvanica
Fraxinus pennsylvanica subintegerrima
Fraxinus americana
Taxodium distichum
Fagus grandifolia
Fagus sylvatica
Betula pendula "Gracilis" 100
Betula pendula
Betula papyrifera
Betula nigra
Viburnum prunifolium
Acer negundo
Aesculus glabra
Rhamnus cathartic
Rhamnus cathartica
Juglans cinerea
Catalpa speciosa
Catalpa bignonioides
Prunus cerasifera
Prunus serotina
Prunus pennsylvanica
Castanea mollissima
Prunus virginiana
Prunus virginiana "Shubert"
Gymnocladus dioicus 80
Phellodendron amurense 100
Populus deltoides 40
Malus spp

|  | 100 |
| :--- | ---: |
|  | 40 |
| Magnolia acuminata | 60 |
| Corrus alternifolia | 80 |
| Cornus florida | 100 |
| Cornus kousa | 100 |
| Ulmus americana | 20 |
| Ulmus pumila | 20 |
| Ulmus rubra | 20 |
| Ginkgo biloba | 100 |
| Laburnum x watereri | 80 |
| Koelreuteria paniculata | 80 |
| Nyssa sylvatica | 60 |
| Celtis occidentalis | 100 |
| Crataegus spp. | 60 |
|  | 100 |
|  | 80 |
| Carya cordiformis | 60 |
| Carya ovata | 60 |
| llex opaca | 80 |
| Gleditsia triacanthos | 40 |
| Gleditsia triacanthos |  |
| var. inermis |  |
| range to the southern portion of Indiana. Its species class in nor |  |

Table 2. (continued)
Common Name $\quad$ Botanical Name $\quad$ Species Class

| Hornbeam, American | Carpinus caroliniana | 100 |
| :--- | :--- | :--- |
| Horsechestnut, Common | Aesculus hippocastanum | 80 |

Horsechestnut, Com
Horsechestnut, Red
Ironwood
Katsura Tree
Larch, Eastern (Tamarack)
Larch, European
Larch, Japanese
Lilac, Japanese Tree
Linden, American (Basswood)
Linden, Greenspire
Linden, Littleleaf
Linden, Redmond
Locust, Black
Magnolia, Saucer
*Magnolia, Southern
Magnolia, Star
Maple, Amur
Maple, Black
Maple, Hedge
*Maple, Japanese
Maple, Norway \& Cultivars
Maple, Red and Cultivars
Maple, Silver
Maple, Sugar
Maple, Sycamore
Maple, Tatarian
*Maple, Trident
Mountain Ash, American
Mountain Ash, European
Mulberry, Red

| Carsculus hippocastanum | 80 |
| :--- | ---: |
| Aesculus carnea | 80 |
| Ostrya virginiana | 80 |
| Cercidiphyllum japonicum | 100 |
| Larix laricina | 40 |
| Larix decidua | 100 |
| Larix kaempferi | 100 |
| Syringa reticulata | 80 |

$\begin{array}{ll}\text { Syringa reticulata } & 80 \\ \text { Tilia }\end{array}$

| d) Tilia americana | 60 |
| :--- | ---: |
| Tilia cordata "Greenspire" | 100 |

Tilia cordata "Greenspire" $\quad 100$
$\begin{array}{lr}\text { Tilia cordata } & 80 \\ \text { Tilia x euchlora "Redmond" } & 100\end{array}$

| Robinia pseudoacacia | 20 |
| :--- | :--- |
| Magnolia soulangiana | 60 |


| Magnolia soulangiana | 60 |
| :--- | ---: |
| Magnolia grandiflora | 80 |
|  |  |

Magnolia Stellata 100
Acer ginnala 80

Acer nigra 100
Acerr campestre 100
Acer palmatum 100
Acer platanoides 100
$\begin{array}{ll}\text { Acer rubrum } & 80 \\ \text { Acer saccharinum } & 40\end{array}$
$\begin{array}{lr}\text { Acer saccharinum } & 40 \\ \text { Acer saccharum } & 100\end{array}$
Acer pseudoplatanus 60
Acer tatarica 80
Acer buergeranum 100
Sorbus americana 60
Sorbus aucuparia 40
Morus rubra 20
Mulberry, White
(Fruiting Tree)Morus alba
(Fruitless Cultivar)
$\begin{array}{ll} & \\ \text { Nannyberry } & 60 \\ & 80\end{array}$
Oak, Black
Oak, Bur
Oak, Chestnut
Oak, Northern Red
Oak, Pin
*Oak, Post
Oak, Red
Oak, Scarlet
Oak, Shingle
Oak, Shumard
Oak, Swamp Chestnut
Oak, Swamp White
Oak, Upright English
Oak, White
*Oak, Willow
Osage Orange
Pawpaw, Common
*Peach, Flowering
Pear, Callery Cultivars
Persimmon, Common
*Planetree, London
Plum, American
Poplar, Bolleana
Poplar, Lombardy
Poplars
Purple-leaf Sand Cherry
Redbud, Eastern
Redwood, Dawn
Russian-olive
Sassafras, Common
Scholar Tree, Chinese
Serviceberry
Sourwood
Sumac, Staghorn
Sweet -gum
Sycamore, American
Tree-of-heaven
Tulip-tree
Walnut, Black
Willows
Yellowwood, American
*Zelkova, Japanese

Quercus velutina 80
Quercus macrocarpa 100
Quercus muehlenbergii 100
Quercus rubra 100
Quercus palustris 80
Quercus stellata 60
Quercus rubra $\quad 100$
Quercus coccinea 80
Quercus imbricaria 100
Quercus shumardii 80
Quercus michauxii 80
Quercus bicolor 100
Quercus robur "Fastigiata" 60
Quercus alba 100
Quercusphellos 80
Maclura pomifera 40
Asimina triloba 60
Prunus persica 60
Pyrus calleryana 80
Diospyros virginiana 60
Plantanus x acerifolia 40
Prunus americana 40
Populus alba "Bolleana" 40
Populus nigra "Italica" 20
Populus spp. 40
Prunus x cistena 40
Cercis canadensis 40
Metasequoia glyptostroboides 100
Elaeagnus angustifolia 40
Sassafras albidum 80
Sophora japonica 80
Amelanchier spp. 80
Oxydendrum arboreum 80
Rhus typhina
Liquidambar styraciflua 80
Platanus occidentalis 40
Ailanthus altissima 20
Liriodendron tulipifera 60
Juglans nigra 80

Salix spp.
Cladastris lutea
Zelkova serrata
20
kova serrata 80


| Table 4. Site Location Values for Shade and Ornamental Trees. |  |  |
| :--- | :---: | :---: |
| Site Location | Location Class | Values for use <br> in Formula* |
|  |  | $0.9-1.0$ |
| Specimen or historical trees | 100 | $0.8-0.9$ |
| Average residential, landscape trees | $80-90$ | $0.7-0.8$ |
| Malls and public area trees | $70-80$ | $0.6-0.8$ |
| Arboretum, park and recreation trees | $60-80$ | $0.6-0.8$ |
| Golf course trees | $60-80$ | $0.6-0.8$ |
| City street trees | $60-80$ | $0.6-0.8$ |
| Environmental screen trees | $60-80$ | $0.5-0.7$ |
| Industrial area trees | $50-70$ | $0.4-0.6$ |
| Out-of-city highway trees | $40-60$ | $0.2-0.4$ |
| Native, open woods trees | $20-40$ |  |
| *Functional or placement deficiencies will reduce site location values. |  |  |

## Examples

1. A $10^{\prime \prime}$ diameter Sugar Maple, excellent health and form, specimen tree in a city park. Local nursery estimate
for a 2 " diameter replacement tree, installed, is $\$ 200$.
Base Value: $2^{\prime \prime}$ tree $=3.1 \mathrm{in}^{2}$ cross section area; $\$ 200 \div 3.1 \mathrm{in}^{2}=\$ 64.50 / \mathrm{in}^{2}$
Cross Section Area: 10 " tree $=78.5 \mathrm{in}^{2}$ (from table) [or $\left.10^{2} \times 0.7854=78.5 \mathrm{in}^{2}\right]$
Species Class: 100 (use 1.0 in formula)
Condition Class: 100 (use 1.0 in formula)
Location Class: 60-80, Select 70 (use 0.7 in formula)
Computation: $\$ 64.50 / \mathrm{in}^{2} \times 78.5 \mathrm{in}^{2} \times 1.0 \times 1.0 \times 0.7=\$ 3544$
2. A 40 cm Silver Maple, good health and form, specimen in residential yard. Local nursery estimate for a 3 cm
diameter replacement tree, installed, is $\$ 50$.
Base Value: 3 cm tree $=7.07 \mathrm{~cm}^{2}$ cross section area; $\$ 50 \div 7.07 \mathrm{~cm}^{2}=\$ 7.08 / \mathrm{cm}^{2}$
Cross Section Area: 40 cm tree $=1256 \mathrm{~cm}^{2}$ (from table) [or $40^{2} \times 0.7854=1256.6 \mathrm{~cm}^{2}$ ]
Species Class: 40 (use 0.4 in formula) 5
Condition Class: 80 (use 0.8 in formula)
Location Class: 90 (use 0.9 in formula)
3. A 4" Red Oak, excellent health and form, specimen tree along city street. Local nursery estimate for a 1.5"
diameter replacement tree, installed, is $\$ 500$.
Base Value: 1.5 " tree $=1.77 \mathrm{in}^{2}$ cross section area; $\$ 500 \div 1.77 \mathrm{in}^{2}=\$ 282.49 / \mathrm{in}^{2}$
Cross Section Area: $4^{\prime \prime}$ tree $=12.6 \mathrm{in}^{2}$ (from table) [or $4^{2} \times 0.7854=12.57 \mathrm{in}^{2}$ ]
Species Class: 100 (use 1.0 in formula)
Condition Class: 100 (use 1.0 in formula)
Location Class: 80 (use 0.8 in formula)
[^0]
[^0]:    For more information on the subject discussed in this publication, consult your local office of the Purdue University Cooperative Extension Service.

